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Critical and off-critical properties of the X X Z  chain in 
external homogeneous and staggered magnetic fields 

F C Alcarazt and A L Malvezzit 
Depmamento de Fisica. Univenidade Federal de S5o Carlos, 13565-905. S5o Carlos. SP. Bnzil 

Received I 3  October 1994. in final form 5 January 1995 

Abstracl. The phase diagram of he X X Z  chain is calculated under the influence of 
homogeneous and staggered magnetic fields. The model has 3 rich phase structure with three 
types of phases. A fully ferromagnetic phase. an antiferromagnetic p h m  and a n ~ ~ s l e s s  phase 
with partial ferromagnetic and antiferromagnetic order. This massless phase's critical fluctuations 
are govemed by a conformal field theory with centnl charge e = I. When the n'-onisotropy A 
is Lem the model is exactly integrable through a Jordan-Wigner fermionization and our results 
are analytic. For A # 0 our analysis is done numerically using lattice sizes up to M = 20. Our 
results show thal for - I  4 A c f i t 2  the staggered magnetic field perturbation is relevant, 
whereas for &/2 c A 4 I it is irrelevant. In the region of relevant perturbations, we show 
thal the masive continuum field theory associated with the model, has the same mass spectrum 
as the sineGordon model. 

1. Introduction 

The anisotropic S = f Heisenberg model, or X X Z  chain, is one of the most studied 
quantum spin system in statistical mechanics. Since its exact solution by Yang and Yang [ 11. 
this model has been considered to be the classical example of the success of the Bethe 
ansatz. The X X Z  chain gives us the first example of a critical line with critical exponents 
varying continuously with the anisotropy. More recently [2,3] with the advance of the 
conformal invariance ideas [4]. the whole operator content of this model was obtanied. The 
critical fluctuations along this critical line are governed by a conformal field theory with 
conformal anomaly c = 1 and, moreover, the underlying currents satisfy a U(1) Kac-Moody 
algebra [5 ] .  

The effect of a uniform magnetic field in the phase diagram of the X X Z  chain 161 
(see figure 1) is to extend the critical phase over a finite region delimited by the 
critical Pokrovsky-Talapov line (FT line i n  figure 1) [7], where the chain becomes fully 
ferromagnetic. Finite-size studies of this extended massless phase [SI showed that it is also 
described by a c = 1 theory with critical exponents now depending on the anisotropy and 
magnetic field. In the antiferromagnetic region (A c -1  in figure l), where the model 
is massive (non-critical), an increasing magnetic field increases it destroying the massive 
phase, which again becomes massless. 

Since the uniform magnetic field does not desuoy the exact integrability of the quantum 
chain, the eigenspectra in the whole extended massless phase can be computed exactly. 
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Figure 1. Phae diagram of Ihe Hamiltonian H(A, h .  hJ given in (1) for h, = 0. The different 
phases and the Pokrovsky-Talapav line are indicated, 

This is not the case when we introduce other perturbations. like a thermal perturbation 
(which is related to a dimerization of the model) or a staggered magnetic field, where exact 
integrability is lost. Some years ago den Nijs [9], exploring the connection between the 
eight-vertex and the Gaussian model, conjectured that a staggered magnetic field could be 
a relevant or irrelevant perturbation depending upon the anisotropy strength. Consequently, 
in the region where this last perturbation is relevant we should expect an effect opposite 
to that of a uniform magnetic field, since it will bring the system into a massive phase. 
Motivated by this, in this paper we study the phase diagram and critical properties of the 
X X Z  chain, when both magnetic fields are present. The XXZ Hamiltonian with these 
fields is given by 

M 
H ( A , h , h , ) =  -4  z[u:c$+l + ~ ~ ~ ~ ~ + A ~ ~ ~ f + , + 2 ( h + ( - l ) ' h , ) ~ f ]  (1) 

i = l  

where U:, U,' and U;, i = I ,  2 ,  . . . , M are Pauli matrices attached at the M sites of the 
chain, A is the U'-anisotropy parameter and h. h,  are the uniform and staggered fields, 
respectively. In this paper we treat H ( A ,  h, h,) with periodic boundary conditions, the 
lattice size M being an even number. 

Using all the machinery coming from finite-size scaling [IO] and conformal 
invariance [4], we will calculate the critical lines, exponents as well as the masses appearing 
in the underlying massive field theory generated by relevant perturbations, 

The paper is organized as follows. In section 2 we review the conformal invariance 
relations relevant for our purposes and the operator content in the absence of magnetic 
fields. In section 3 we consider the cases, where h, f 0. Initially we discuss the X Y  chain, 
where A = 0. This case is special since the eigenspectra can be calculated analytically 
through a Jordan-Wigner fermionization of the Hamiltonian. The general situation where 
A # 0 is studied numerically. In section 4 we conclude with a general discussion of our 
results. 
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2. Conformal invariance relations and the operator content when & = 0 

Like most statistical mechanical systems in If1 dimensions we assume, that the Hamiltonian 
(1) in its massless regime is conformally invariant. Under this assumption for each 
operator [4.11] 0, with dimension xu and spin s, in the operator algebra of the infinite 
system, there exists an infinite tower of states in the quantum Hamiltonian, for a periodic 
chain of M sites, whose energy and momentum as M + 00 are given by 

( 2 )  
2RU 

E T J M )  = E d M )  + - (xa + j + j ' )  + o(M- ' )  M 
and 

where j ,  j' = 0, 1. . . . ; E o ( M )  is the ground-state energy and v is the velocity of sound, 
which can be determined by the dispersion relation of the spectra or by the difference among 
energy levels belonging to the same conformal tower. 

The conformal anomaly c can be obtained from the finite-size corrections of the ground- 
state energy. For periodic chains, the ground-state energy behaves asymptotically as [ 121 

where e ,  is the ground-state energy per site in the bulk limit. In the case of the X X Z  
Hamiltonian with no external fields, H(A,  h = 0. h, = 0) and - 1  < A < 1 these relations 
give us the whole operator content of the underlying field theory [2,3,5]. Along the critical 
line -1 < A < 1 the central charge is c = 1 and the anomalous dimensions appearing in 
the model are given by integer numbers or by 

where xp = (A - COS-](-A))/ZR and n and m are integers. Moreover, we can show [SI, 
by combining the integer dimensions with (5), that the model is governed by a conformal 
field theory satisfying a larger algebra than the Wrasoro conformal algebra, namely, a U(1) 
Kac-Moody algebra. This U(1) symmetry comes from the commutation of the Hamiltonian 
(1) with the z component of the total spin 1131 

M 
S, = 0: = n .  

For a given sector of the Hilbert space where the total spin S, = n it corresponds to a 
set of primary operators On,m with dimensions x ~ , ~  (m = 0. kl, &2, . . .) and the number 
of descendants operators (with dimensions x " , ~  + j + j ' ,  j ,  j' E 2) will be given by the 
product of two U(1) Kac-Moody characters [5]. The operators can be interpreted, in 
a Gaussian language [ 141, as operators with vorticity n and spin wave excitation number m. 
The critical exponents are obtained from the dimensions (5). 

All the above results were obtained for h, = h = 0 and by exploring the exact 
integrability of the model through the Bethe ansatz, which numerically [ Z ]  or analytically [3] 
produced very precise results. Such integrability is not destroyed by the introduction of the 
uniform magnetic field and precise results can also be obtained in this case. In the case 
where h, = 0 and h # 0, as we see in figure I ,  the massless line extends forming a 
massless phase. This massless phase is ordered ferromagnetically and for a given value 
of the anisotropy A the magnetization changes from zero to its maximum value where 
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the system is fully osdered. The points, where the magnetization reaches its maximum 
value, form the Pokrovsky-Talapov transition line [7]. which separates the massive fully 
ferromagnetic phase from the massless partially ordered ferromagnetic phase. 

The physical mechanism producing the extended massless phase in figure 1 is due to the 
following. From equations (1) and (6) the magnetic field only decreases the eigenenergies 
in the sectors where n > 0. On the critical line -1 < A < 1 and h = 0 the ground 
state belongs to the sector n = 0. Since we have no gap, a small but finite positive 
magnetic field will lead the ground state into a sector with n > 0, producing a partially 
ordered ferromagnetic phase. However, the fluctuations around this ordered phase are of a 
same nature as those appearing in the absence of the magnetic field (h  = 0). This argument 
implies that in the whole massless phase we should expect a c = 1 Gaussian field theory with 
the anomalous dimensions like those given in (5). In fact this was observed analytically [XI 
for -1 < A < 1 and numerically 1151 in the whole extended phase. In [SI, although a 
closed analytic form for the dimensions in the extended massless phase was not derived, 
the dimensions were shown to be of Gaussian type as in (5). but with xp now depending 
on A and h.  The case where A = 0 is special since only in this case the dimensions do 
not depend on the magnetic field h. 

The finite-size analysis of the Hamiltonian ( I )  with a non-zero uniform magnetic field 
deserves some comments, since for a fixed value of h the ground-state sector changes as 
the lattice size increases. In order to approach the bulk-limit physics (M + CO) correctly 
we should keep the magnetization per particle fixed for finite chains. This implies that, for 
a given magnetic field, only a sequence of lattice sizes producing a fixed magnetization. 
related to h,  should be used. 

The transition line of Pokrovsky-Talapov type in figure 1 is obtained by calculating the 
lowest value of the magnetic field where the ground state is ferromagnetic (sector n = M / 2 ) .  
This magnetic field is h = 1 - A for arbitrary values of the lattice size M.  

3. Results for h, f; 0 

We now analyse the situation, where both magnetic fields h and h, are non-zero. For h = 0 
the staggered magnetic field produces an antiferromagnetic ordered ground state. As for 
k, = 0 the ground state belongs to the sector with n = 0. Irrespective of the h, value we 
do expect that for sufficiently large values of h (h  >> h,) the same mechanism discussed in 
last section, which changes the ground-state sector, will also take place. Consequently, we 
should have a phase transition surface of Pokrovsky-Talapov type, where the ground state 
becomes the fully ordered ferromagnetic state, The magnetic field h ( A ,  h,) at this surface, 
as in the previous section, is calculated by imposing the ground state as the fully ordered 
ferromagnet state, 

F C A1cara.z and A L Malvezzi 

h ( A ,  h,) = h y  = Jh, ' t l - A .  (7) 

For h > /z:' the ground state of H ( A ,  I t ,  11,) is the ferromagnetic state. 

3.1. A = 0 

In this case the Hamiltonian H ( A , h , h r )  can be diagonalized through a Jordan-Wigner 
transformation (see appendix A of [161): 
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where n! are fermionic annihilation operators of momentum k and 0k = I for -n/2 < k 6 
7r/2 and 0x = - 1  otherwise?. For simplicity we consider the lattice, whose size M is a 
multiple of 4, and momenta taking the possible values 

I 
(21 + +))% l= - L M ,  2 - L M  2 + I . .  . . , +M - t (n)  (9) 

where 6 ( n )  = 1 or 0 depending if the sector n is even or odd, respectively. The lowest 
eigenstate in a given sector with U ( 1 )  charge n has zero momentum and energy 

M14-n~l+€)12 
E. = 2 h: + cos2 -(2f + E )  - 2nh,  (10) 

I=-M/4+n/2+( I -e)/Z 

From equation (7) we know that at h = the system undergoes a phase transition 
to the ordered ferromagnetic state. In order to detect other phase transitions let us calculate 
the mass gap of H ( 0 ,  h,. h )  for small values of h. In such cases the ground state remains 
in the sector n = 0 and the first excited state in the sector n = I. From equation (10) the 
mass gap is given by 

Therefore, as long as h, > h the model is massive and ordered antiferromagnetically. At 
h = h,  the model becomes massless and by the same mechanism discussed in the last 
section, we expect that, as h increases, the model stays massless, until the Pokrovsky- 
Talapov line is reached. This intermediate phase has a ferromagnetic order, since now the 
ground state changes sectors as h increases. In figure 2 we show the phase diagram at 
A = 0. 

Figure 2. Phase diagram of lhe Hamilloni3n H ( A ,  h,  h,) given in ( I )  for A = 0. The massless 
phase is separated from the ferromagnetic phase by lhe Pokrovsky-Tdapov tine h = 
and from the antiferromagnetic phase by the line h = h,. 

t In the derivation of (8) the sign Ox can be arbiUary. With our choice all lhe excitntions are combinations of 
particles. 
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Intermediufe phase at A = 0. In order to analyse this phase using finite-size scaling we 
should keep the magnetization per particle p fixed. This is done by choosing a sequence of 
lattice sizes MI ,  Mz, . . . and sectors n1, nz, . . . , such that p = nj/Mi, i = 1.2, . . , is fixed. 
For a given lattice size Mi and magnetization p the magnetic field that gives the ground state 
in the sector where n; = nMi should be in the range hmin(Mi, p) < h 6 hm(M;, p), where 
h&"(M;, p )  = ( E ,  - E,,,-1)/2 and h,,(Mi, IL) = (&,+I - E , , ) / 2 .  From equation (10) in 
the bulk limit we obtain 

F C Alcaraz and A L Malvezzi 

h,,,in(m. p )  = hmax(co, fi) = h ,  = Jh: + sin'a (12) 
where p = n;/M; and a = p n .  Consequently, if the applied field has the value h = h,, 
all the finite lattice sequences M; ( i  = 1 , 2 , .  . .) will have its ground state in the sector with 
U(1) charge n; = pMi (i = 1, 2, ...). It i s  simple to verify from (IO) that for arbitrary 
values of 0 Q p < 1 the gap vanishes as M -+ CO, and consequently this partially ordered 
phase is critical. 

For fixed values of p the finite-size correction of the ground-staie energy E f i  in the 
asymptotic regime M -+ CO can be obtained using the Euler-Maclaurin formula [17] in 
(IO), which gives us 

is the energy per particle in the bulk limit M --f 00. The low-lying excited states with non- 
zero momenmm are calculated by changing the fermions momenta entering in the ground 
state. From these energies we can derive the dispersion relation and the sound velocity 

U=- (15) 

which changes continuously along the massless phase. By comparing (13) and (15) with 
(4) we see that the conformal anomaly is c = 1 for all values of p. 

From equation (2 )  the anomalous dimensions of the conformal operators are calculated 
from the finite-size corrections to the mass gap amplitudes. For a certain fermionic 
configuration, they are calculated straightforwardly by using the Euler-Maclaurin formula. 
For an arbitrary, but rational magnetization I.L = p/q (or magnetic field h = Jz), 
the lattice sequence with size Mi = iq (i = 1,2,  . . .) will have its ground state in the U (  I )  
sector n; = pM; = ip (i = I ,  2, . . .). The lowest eigenstate in neighbouring sectors where 
n; = nj + it (ii = *I ,  3 2 , .  . .) has zero momentum and will give the mass gap 

sin(7.a) 

h, 

2n i t 2  
En; - E:' = -U- + o(A4-l) M 4  

The excited states in the sectors n; (i = 1,2,  . . .), obtained by the addition (subtraction) of 
a momenta j 2 n / M  (j ' ;?n/M) to the fermions with positive (negative) momenta, will give 
us an eigenstate with momentum 

and mass gap 
. .I 2ir 

E$J - .EGS "i = -u(4f iZ  M + j + j ' )  + O ( M - ~ ) .  
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The relations (2) and (3) enable us to identify the eigenenergies EL;' as the conformal tower 
of the primary operator with dimension xii.0 = $i?. 

Other excited states in the sectors where n; = ni+A (r7 = 51, +2, . . .) are derived from 
the fermion configuration producing EL;'. These eigenenergies are obtained by replacing 
fermions with positive (negative) momenta by fermions with negative (positive) momenta. 
The momenta of such states are 

and the mass gaps are 

where xp and 6 ,  6, j ,  j' = 0, +l,  zk2, . . . . From relations (2) and (3) we identify (20) as 
the conformal tower of the primary operator with dimension  xi,^ = ($r72+62). Following 
the discussion of section 2 (see equation ( 5 ) )  we can interpret x5.e as the dimension of a 
Gaussian operator 0t.a with vorticity ri and spin-wave number 6. Furthermore, from the 
degeneracies of the low-lying energies in the conformal towers {E,);] we verify that they 
are given by the product of the characters of the U ( 1 )  Kac-Moody'algebra as discussed in 
section 2 for the case where h, = 0. Therefore the whole massless regime has the same 
critical nature as in the case where h, = 0, being governed by a c = 1 conformal field 
theory with operators satisfying a U(1) Kac-Moody algebra. 

Comparing equations (ZO), (15) and (5 )  we see that the sound velocity depends on h 
and h,,  while the dimensions xp,a are constants. As we shall see, this independence of 
exponents is a particular feature of the case where A = 0. It is interesting to observe that, 
contrary to standard conformal towers appearing in critical systems, equation (19) tells us 
that the eigenstates in the conformal tower have a macroscopic momenta as long as p # 0. 
This is due to the fact that the fluctuations ruling the critical behaviour are on top of a 
partially ordered ferromagnet state. Another delicate point appearing here [IS] is that a 
continuum conformal theory can only be constructed for h = hF + sin2$, with p having 
a rational value, since the lattice sizes and sectors appearing in the finite-size sequences are 
integer values p = n i / M ,  (i = I ,  2. . . .). For h connected with an irrational value of p. 
we can only obtain a conformal theory by approximating p by a close rational number. 

J---. 

Massive phase cat A = 0. The antifenomagnetic phase for h < hr is massive with a mass 
gap given by (1 1). A continuum field theory describing the physics in this massive phase 
can be obtained in the neighbourhood of the perturbing parameter 6 = h, - h 2 0. Such a 
field theory will be massive and the masses can be estimated from the finite-size behaviour 
of the eigenspectra. The mass spectrum can be calculated by applying the scheme followed 
by Sagdeev and Zamolodchikov [ 191 i n  the study of the king model in an external magnetic 
field. To do such calculations we should initially find the finite-size corrections of the zero- 
momenta eigenenergies E&, M ) .  k = 1,2, . . . , at the conformal invariant point 6 = 0. In 
the case of the Hamiltonian ( I )  the results of [Z] tell us that such corrections, not only at 
A = 0 but for arbitrary values of A ( - 1  < A < I ) ,  are mainly governed by the irrelevant 
operator with dimension ,? = x0.2 = I/*, and the descendent of the identity operator with 
dimension 4. From [2] we have 
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where xk is one of the dimensions (5) associated to Ek,  and a i ,  a?, . . . are M-independent 
factors. According to the scheme of 1191, if the perturbed operator which produces the 
massive behaviour has dimension y. we should calculate the eigenspectra in the asymptotic 
regime 6 --). 0, M + w, with 

(22) X = aI/(z-?) M 

kept fixed. In this regime (21) is replaced by 

Ek(6, M) = e,M + 611(2-y)Fk(x) + 6'-')/('-?'Gk(X) + 6'2-'-3)/"-y)V~(X) 
+ p - 5 ) / ( 2 - ~ ) ~ ~ ( ~ )  + . . . , (231 

The masses of the continuum field theory are obtained from the large-X behaviour of the 
function [I91 Fk(X), i.e. 

mk Fk(x) - FO(x).  (24) 

Equations (21)-(24) can be used for arbitrary A. In fact once we know 2 = I/xp, the 
dimension associated to the off-critical perturbation y as well the generated masses can be 
calculated from (22)-(24). 

In the case A = 0 the perturbing parameter is 6 = h, - h 2 0. By keeping 
X = (hs - h)'/@-?) M fixed, with y unknown, we obtain from (IO), for h, + 0 

S2 
X El - Eo 2(h, - h )  - -h:'('-y) (25) 

where S2 is a constant. Consequently by comparing (25) with (23) and (24) we obtain the 
dimension y = 1 for the perturbing operator and the mass mi = '2 associated with the first 

The gap associated with the lowest eigenenergy in the sectors with n even is obtained 
gap. 

from ( 10) 

Since n is finite, expanding for small values of h,  we get, by comparing with (23), the 
dimension y = 1 for the perturbing operator and 

F,(X) - Fo(X) = 4 5  {F (27) 
1 4  

which gives, for X + w, the masses m, = n2 = nmf. The same result is also obtained 
in the case where n is odd. Similar calculations for zero-momentum (modulo n) excited 
states show us that these states are associated with multiples of the mass ml. However, our 
calculations show the existence of two equal masses in the system: m, = m2 = 2. This is 
in agreement with the two-fold degeneracy of the first excited state with zero momentum 
(modulo n) in the ground-state sector n = 0. The levels are related to the threshold 
energy 2mi. 

The dimension y = I for the perturbing operator and the Gaussian dimensions given 
in (5), with xp = i ,  indicate that this operator is the a , ,  operator (see section 2) with 
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dimension y = ~0.1 = 1. This implies that in the region where X O . ~  > 2, (A  > f i / 2 )  
this perturbation will be irrelevant and the phase stays massless after the introduction of a 
small h,. 

3.2. A # 0 

In this case the analytical diagonalization done for A = 0 does not work since the Jordan- 
Wigner transformation applied to the Hamiltonian ( I )  will generate a four-body fermionic 
interaction. Consequently we will resort to numerical analysis. According to finite-size 
scaling theory (FSS) [IO] the critical surfaces of H ( A ,  h .  h,)  [IO] can be obtained from the 
extrapolation (M + CO) of the sequences (AtM), h C M ) .  h iM))  (M = 2.4, . . .), obtained by 
solving the equation 

(28) M G M ( A ,  h, h,) = (M - 2)Gw-2(A3 h ,  h d  

where G M ( A ,  h ,  h,) is the gap of the Hamiltonian (1) with M sites. 
In order to simplify our analysis let us consider initially the plane h = 0. The critical 

surface is obtained by solving (28) with A or h, fixed. In tables 1 and 2 we show some 
of the finite-size sequences for lattice sizes up to M = 18. In table 1 h, is fixed while 
in  table 2 A is fixed. In figure 3 we show the curves in the space ( A , h ) ,  that solve 
(28) for several lattice sizes. We clearly see in the figure that as (M + CO) the curves 
for A c A* c 0.7 tend toward h, = 0, while for A > A* the curves tend toward non- 
zero values of h,. The blown up region A = A* is also included in figure 3, where 
the points we used to draw the continuum curves are also shown. These results clearly 
indicate that for A c A* 0.7 the perturbation introduced by h, is relevant producing a 
massive antiferromagnetic phase, while for 1 > A > A* the model stays massless until 
it reaches a critical staggered field h: = h f ( A )  which depends on the value of A .  This 
is in complete agreement with predictions considering the A = 0. There we associated 
the operator with dimension x0.l = I/x, = n / [ 2  (x  - cos-’(-A))l with the staggered field 

Table 1. Sequences of estimators for lhe anisotropy A in lhe plane h = 0, obtained by solving 
(28) with h, kept fixed. 

M - 2 , M  hs=O.O1 h,=0.03 h,=0.05 h,=0.1 h , = 0 . 2  h,=0.5 h,=l.O 

8. I O  -0.454073 I -0.0159442 0.3100008 0.5969325 0.7614057 0.986409 1 1.3628443 
IO. 12 -0.3507805 0.231 1949 0.4642322 0.659 1962 0.7855170 0.9930197 1.3634265 
12, 14 -0.2052818 0.3724661 0,5441739 0.693 1414 0.7996157 0.9972828 1.3660457 
14. 16 -0.0457780 0.4570385 0.5922408 0.7145697 0.8088957 1.0002445 1.3650563 
16.18 0.0891170 0.5122369 0.6242583 0.7293916 0.8154915 1.0024008 1.3657592 

Table 2. Sequences of estimaton for the anisotropy A in the plane h = 0. obtained by solving 
(28) with A kept fixed. 

M - 2 . M  A=O.6 A=O.65 A=O.675 A=O.7 A=O.725 A=O.75 A=0 .8  

8. I O  0.1010376 0.1213905 0.1344105 0.1499071 0.1682486 0.1890890 0.2420444 
IO, 12 0.0776’255 0.0958401 0,1078859 0.1225705 0.1404855 0.162 1757 0.2176779 
12. 14 0.0624300 0.0789604 0.0901779 0.1041465 0.1215976 0,1432584 0.2005065 
14. 16 0.0518302 0.0669150 0.0773753 0.0906412 0.1075649 0.1290517 0.1875885 
16. 18 0.0440532 0.0578975 0.0676763 0.0802761 0.0966522 0,1178787 0 1773956 
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Figure 3. Finitesize estimators of the p h a e  diagram of the Hamiltonian H(A, h. h,) given 
in ( I )  tor h = 0. The curyes are obrained by solving (28) for lanice sire pain (M - 2, M) 
(M = IO. 12.. . , . 18). The antiferromagnetic. massless and ferromagnetic phases are indicated 
by AF. ML and FE respectively. The Pokovsky-Talapov curve Pr is also indicated. The blown-up 
region 0.57 < A C 0.82 is also shown With the points used to draw the continuum C U N ~ S .  

perturbation. Therefore the perturbation is irrelevant for A > A* = A/?. % 0.707 and the 
phase, which appears for A > A* in figure 3, should he a massless antiferromagnetic 
ordered phase, since h, # 0 there. This agrees completely with predictions made in an 
earlier work by den Nijs [9]. The massless phase (denoted by ML in figure 3) is separated 
from the fully ferromagnetic phase (denoted by FE in figure 3) by the Pokrovsky-Talapov 
curve (PT) h, = m, obtained from (7). 

We confirmed numerically the massless nature of the ML phase. Using relations (2)- 
(4) we verified that the whole phase is govemed by a c = 1 Gaussian conformal field 
theory with dimensions as in (3, with xp varying continuously in the whole phase. As a 
consequence of (5), ratios of dimensions like x n . o / x ~ . ~  = nz should be independent of xp. 
In order to illustrate this let us consider the ratio Gz/GI between the gaps in the sectors 
n = 2 and 1. Since the gaps are related to the dimensions xz.0 and ~ 1 . 0 ,  this ratio should 
tend to the value X Z , O / X ~ . O  = 4, as M + CO. In figure 4 we show these ratios as a function 
of A for M = 20 and some values of h,. It is clear from this figure that the ratio does 
indeed change to the expected value of 4, for values of A which depend on h,, consistent 
with the results shown in figure 3. 

Our results also show that the mcurve  of figure 3 has a behaviour different from the rest 
of the Pokrovsky-Talapov surface (7), since it is only along this curve that we have a first- 
order phase transition. When h = 0, crossing the FT curve, the ground state changes from 
the ferromagnetic sector n = M / 2  to the sector n = 0 discontinuously. As a consequence 
the magnetization per lattice point changes discontinuously from 1 to zero, as we move 
from the FE phase to the ML phase (see figure 3). Similarly the staggered magnetization 

(29) 

changes discontinuously from zero to a finite value, which depends on A. Also along 
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Figure 4. Ratios G2/G1 between the gaps C2 in sector n = 2 and G1 in the sector n = I of 
the Hamiltonian H(A.0, h,) given in equation ( I ) .  The ratios ase shown as a function of A 
far lattice size M = 20 and some values of h,. In the region where the phase is massless. we 
expect the Gaussian relation G21C1 - x2,olx1,0 = 4 as M + m. 

the surface PT the ground-state wavefunction, which is non-degenerated for h # 0, 
becomes M-degenerated when h = 0. All the lowest states in the sectors with n = 
- L M ,  2 -$M + 1 , .  . . , $M - 1, ;U become degenerated. We can also show that along 
this PT curve these degenerated ground-state wavefunctions, for a given sector n,  are given 
exactly by 

where 

and si = + I  (i = 1,2,. . . , M )  are the eigenvalues in the 0; basis and the prime in the sum 
indicates that the configurations Is) are constrained to 

Massive phase at A # 0. Similarly, as we did for A = 0. let us now investigate the 
continuum massive field theory describing the fluctuations in the massive phase (AF) of 
figure 3. The masses of this continuum theory are obtained from the eigenspectrum of the 
Hamiltonian in the scaling regime given by (22) with 6 = h, and from our present analysis 
the dimension y of the perturbing operator is y = X O , ~  = a/I2(n - cos-l(-A))]. Using 
equation (21). (23) and (24) we can calculate the mass ratios of the continuum theory. 
They are catculated from the asymptotic regime M + M and X -+ 03 of the finite-size 
sequences 

si = n. 

The functions F,(")(X, M) are obtained by using in (23) the finite-size sequence of the 
k zero-momentum states (k = 0,1,2, . , .) in the U(1) sector n. The associated mass 
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Table 3. The mass-ratio estimators R f l ( X .  M) defined in (32) for some vdues of the anisotropy 
A in the plme h = 0. The conjectured values of lasf tine are &,en by (33). 

A . = - (  2 A = - ; &  A = - $ &  

X mzlml  mzlmi  m ~ l m i  m d m l  m d m l  

6 1.641 15 1.41970 2.20667 1.25317 2.15167 
10 1.61967 1.40502 2.06304 1.18785 2.01352 
14 1.62223 1.40555 2.03037 1.15271 1.99746 
Eoention 1331 1.61803 1.41421 2.OWOO 1,24698 1.94986 

is m f )  while the lightest mass, obtained from the lowest eigenenergy in the sector with 
n = 51, is mh’). Our results indicate that for A 2 0 we have only two equal masses 
M = mt’ = mi-’) and a continuum starting at 2M. For A < 0 other masses appear 
depending on the value of A. In table 3 we present some of our estimators for the 
mass ratios. We show for M = 20 the ratios (32) for some values of X and A. 
There we see two masses ml = m a )  and m2 = mf” with ratio m2/m1 = 1.61 & 0.03 
for A = -i For A = -&/Z (A = -&/2) a third mass appears with the ratios 
m3/ml = m . / m t ’  =2.010.2 (= 1.9&0.1), m z / m ~  = 1.41 zk0.01 (= 1.2iO.1). 

It is well known that the six-vertex model (or the X X Z  chain) is transformed into the 
eight-vertex model (or the XYZ chain) by a thermal perturbation [ZO]. The spectrum of the 
transfer matrix of the eight-vertex model was calculated [Zl] explicitly and is the same as 
that of the sine-Gordon model [22]. From these results the thermal perturbation in the X X Z  
chain will produce the following sine-Gordon masses. For A 2 0 there will have a mass 
M twice degenerated plus a continuum starting at 2 M .  These are the soliton-antisoliton 
pair. For A < 0. beyond the soliton-antisoliton pair bound states will appear with masses 
depending on A, 

mi+l=2ml sin(’;) i = 1,2. ..., [a] 

where 
3ir - 4COS-’(-A) 

7r 
a =  

(33) 

(34) 

and [a] is the integer part of a. 
Our results in table 3 show that in the case where the perturbing field is also the 

staggered magnetic field, the mass spectrum is the same as the one of sine-Gordon model 
given by (33) and (34). 

4. Conclusions 

The results we obtained in the last section enable us to obtain a complete schematic phase 
diagram of the Hamiltonian (1). For simplicily we only draw it  for A 2 0 in figure 5. The 
surface OGFHI separates the antiferromagnetic phase AF from the massless phase ML, while 
the surface AEDCB separates this last phase from the frozen ferromagnetic phase FE. The 
order parameters characterizing such phases are the magnetization 
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A h l  
H 

and the staggered magnetization 

Figure 5. Schematic phase diagram of 
H ( A ,  h ,  h,)  given in (1). The phases indicated 
by FE. ML and AF are the fully ferromagnetic. 
massless and antiferromagnetic phases, respec- 
tively. The Pokrovsky-Tdapov surhce ABCDE 
sepames the ferromagnetic and massless phases 
and the surface FGOIH separates [his last phase 
from the antiferromagnetic one. AU the phase- 
transition surfaces are of second order except the 
line AE where it is first order. 

In the FE phase = 0, in the AF phase %h = 0 and a h ,  # 0, while for 
h # 0 in phase ML we have a,, # 0 and uhT # 0. At h = 0 phases AF and ML have 
only antiferromagnetic order (ah = 0, ah, # O), but these phases differ since, Contrary to 
phase AF (or FE), where the correlations have an exponential decay in the massless phase 
ML the correlations have a power-law decay. 

All the phase transition surfaces of figure 5 are of second order, except the curve AE 
obtained when h = 0. The surface AEDCB is the Pokrovsky-Talapov surface given by (7). 
On this whole surface the ground state is the ordered Heisenberg state with all the spins 
up, except at tbe curve AE where I is M degenerated with a wavefunction given exactly 

In the entire massless phase our numerical and analytical results show that the critical 
exponents change continuously with h,  h, and A, except at A = 0 where the exponents are 
constant. The critical fluctuations in this phase are governed by a conformal field theory 
with central charge c = I and operators satisfying a U(1) Kac-Moody algebra 

Our numerical and analytical analysis clearly indicates that the staggered magnetic 
field perturbation is associated with the operator with dimension x0.1 = 1/4x, = 
n/[2(n - cos-'(-A))]. This confirms an earlier prediction of den Nijs [9] stating that 
for A > &/2 this perturbation is irrelevant. 

Coming from the massless phase ML to the antiferromagetic phase AF in figure 3, the 
fluctuations will be ruled by a massive continuum field theory. Our analysis of the last 
section indicates that such massive field theory is the sineGordon field theory with a mass 
spectrum, which depends on the value of A as in (33). This is the same mass spectrum as 
obtained by perturbing the X X Z  by a thermal field. 

# 0 and 

by (30). 
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